679 research outputs found

    Application of Fuzzy Set Theory in Option of Response Spectra

    Get PDF
    In order to consider the fuzziness of seismic intensity indecated by zoning map and seismic code in seismic design of structure, an innovative method in option of design spectrum in consideration of fuzziness of regional seismic hazard and site condition is presented herein. The solution of the problem can be divided into two steps: 1. to define and establish a fuzzy set for predicting and judging regional seismic hazard and site condition by applying fuzzy mathematics; 2. further to find out fuzzy vector of design spectrum depending on the fuzzy set of regional seismic hazard and site condition by applying fuzzy comprehensive Judgement theory

    RRHGE: a novel approach to classify the estrogen receptor based breast cancer subtypes

    Get PDF
    Breast cancer is the most common type of cancer among females with a high mortality rate. It is essential to classify the estrogen receptor based breast cancer subtypes into correct subclasses, so that the right treatments can be applied to lower the mortality rate. Using gene signatures derived from gene interaction networks to classify breast cancers has proven to be more reproducible and can achieve higher classification performance. However, the interactions in the gene interaction network usually contain many false-positive interactions that do not have any biological meanings. Therefore, it is a challenge to incorporate the reliability assessment of interactions when deriving gene signatures from gene interaction networks. How to effectively extract gene signatures from available resources is critical to the success of cancer classification

    Breast cancer prognosis risk estimation using integrated gene expression and clinical data

    Full text link
    Novel prognostic markers are needed so newly diagnosed breast cancer patients do not undergo any unnecessary therapy. Various microarray gene expression datasets based studies have generated gene signatures to predict the prognosis outcomes, while ignoring the large amount of information contained in established clinical markers. Nevertheless, small sample sizes in individual microarray datasets remain a bottleneck in generating robust gene signatures that show limited predictive power. The aim of this study is to achieve high classification accuracy for the good prognosis group and then achieve high classification accuracy for the poor prognosis group

    Finite element modeling and active vibration control of high-speed spinning flexible beam

    Get PDF
    Finite element modeling and active vibration control of a high-speed spinning flexible coupled electromechanical beam is investigated using a first-order approximation coupling (FOAC) model. Due to centrifugal forces caused by eccentricity in a spinning flexible beam, there exists coupling between axial and transverse vibration modes. The partial differential equations of motion of the beam governing this coupling are derived using Hamilton’s principle based on an FOAC model, and a finite element method for discretization is given. It is observed that the zero-order approximate coupling (ZOAC) model is valid for dynamic description of the flexible beam spinning at low speeds, but no longer valid at high speeds. However, the validity of FOAC model is confirmed at different speeds. Piezoelectric elements for active vibration control of the spinning flexible beam are analyzed and a velocity feedback controller is proposed. Simulation results demonstrate good performance of the proposed velocity feedback controller

    Determining Validity of a Point of Interest Based on Existing Data

    Get PDF
    Generally, the present disclosure is directed to determining whether or not a point of interest is valid based on existing data. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict a likelihood of a point of interest being valid based on ‘clues’ gathered from existing data

    HaMuCo: Hand Pose Estimation via Multiview Collaborative Self-Supervised Learning

    Full text link
    Recent advancements in 3D hand pose estimation have shown promising results, but its effectiveness has primarily relied on the availability of large-scale annotated datasets, the creation of which is a laborious and costly process. To alleviate the label-hungry limitation, we propose a self-supervised learning framework, HaMuCo, that learns a single-view hand pose estimator from multi-view pseudo 2D labels. However, one of the main challenges of self-supervised learning is the presence of noisy labels and the ``groupthink'' effect from multiple views. To overcome these issues, we introduce a cross-view interaction network that distills the single-view estimator by utilizing the cross-view correlated features and enforcing multi-view consistency to achieve collaborative learning. Both the single-view estimator and the cross-view interaction network are trained jointly in an end-to-end manner. Extensive experiments show that our method can achieve state-of-the-art performance on multi-view self-supervised hand pose estimation. Furthermore, the proposed cross-view interaction network can also be applied to hand pose estimation from multi-view input and outperforms previous methods under the same settings.Comment: Accepted to ICCV 2023. Won first place in the HANDS22 Challenge Task 2. Project page: https://zxz267.github.io/HaMuC

    Mixed Inter Second Order Cone Programming Taking Appropriate Approximation for the Unit Commitment in Hybrid AC-DC Grid

    Get PDF

    HDR Video Reconstruction with a Large Dynamic Dataset in Raw and sRGB Domains

    Full text link
    High dynamic range (HDR) video reconstruction is attracting more and more attention due to the superior visual quality compared with those of low dynamic range (LDR) videos. The availability of LDR-HDR training pairs is essential for the HDR reconstruction quality. However, there are still no real LDR-HDR pairs for dynamic scenes due to the difficulty in capturing LDR-HDR frames simultaneously. In this work, we propose to utilize a staggered sensor to capture two alternate exposure images simultaneously, which are then fused into an HDR frame in both raw and sRGB domains. In this way, we build a large scale LDR-HDR video dataset with 85 scenes and each scene contains 60 frames. Based on this dataset, we further propose a Raw-HDRNet, which utilizes the raw LDR frames as inputs. We propose a pyramid flow-guided deformation convolution to align neighboring frames. Experimental results demonstrate that 1) the proposed dataset can improve the HDR reconstruction performance on real scenes for three benchmark networks; 2) Compared with sRGB inputs, utilizing raw inputs can further improve the reconstruction quality and our proposed Raw-HDRNet is a strong baseline for raw HDR reconstruction. Our dataset and code will be released after the acceptance of this paper

    A Novel Prediction Method about Single Components of Analog Circuits Based on Complex Field Modeling

    Get PDF
    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits’ single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits’ single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments
    • …
    corecore